If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+11n-2484=0
a = 3; b = 11; c = -2484;
Δ = b2-4ac
Δ = 112-4·3·(-2484)
Δ = 29929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{29929}=173$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-173}{2*3}=\frac{-184}{6} =-30+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+173}{2*3}=\frac{162}{6} =27 $
| 7^x+2=343 | | 12x−25=5(2x−1) | | 2x1/7=1 | | 3x=x+100=180 | | 3(j-2)+2j=23 | | -17–9h-5h+-4h=17 | | 5x+15=30+40+70 | | 8(5x+12)=+8x-19 | | 5(4x+1)=-4(3x-4)-3x | | 2.9x=9.57 | | 4n-1=-(8-5n) | | 6g=5,280 | | 3(3x+4)=-3(4x-5)-4x | | 8g=32.8 | | -3m-5(m+4)=-28-7m | | 6–x=-12 | | 2/5y-4=2 | | 25x+40xx=4 | | 1/2(n+5)=10 | | 4x^2+29x+50=0 | | 21+4x=57 | | 4(4x+1)=-3(4x-5)-4x | | 2(4+3v)-2=0 | | n/20=68 | | 3x-6x-15=-3x+2-15 | | 8.3x=124.5 | | 4x=14.75 | | x+85=245 | | 30x+50x=80 | | x-$433.29=$115.46 | | 3(5x+1)=-2(2x-3)-3x | | 2(2x+5)=-4(4x-4)-5x |